Math 112 - Review for Test 1
Directions: Show your work for full credit. The way you drive your answer is most important.

1) Let $f(x)=x+\sin (x)$. Estimate the value of $\int_{0}^{3} f(x) d x$ by evaluating the left sum with three equal intervals. Find the actual value of the integral using the Fundamental Theorem of Calculus, compare your approximation and find the error committed by L_{3}.
2) Find a definite integral that is approximated by the left sum: $\frac{2}{5} \Sigma_{i=0}^{19} e^{\frac{2}{5} i}$.
3) Use sigma notation to express
1. the left sum approximation to $\int_{0}^{2 \pi} \sin (x) d x$
(a) with 8 equal subintervals
(b) with n equal subintervals
2. the midpoint sum approximation to $\int_{1}^{3} \frac{1}{1+x^{2}} d x$
(a) with 8 equal subintervals
(b) with n equal subintervals
4) Give an example of a function f and an interval $[a, b]$ so that $L_{5}<R_{5}$.
5) Give an example of a function f and an interval $[a, b]$ so that $M_{10}<L_{10}$.
6) Give an example of a function f and an interval $[a, b]$ so that $M_{4}<R_{4}$.
7) Find the exact value of the integral $\int_{1}^{2}\left(x^{2}+1\right) d x$ by setting up a right Riemann sum using sigma notation and using the definition of Riemann integral.
8) Do four steps (step size 0.5) in approximating a solution to the initial value problem $y^{\prime}=y-x, y(0)=2$ using Euler's method.

9 Let $I=\int_{0}^{3} f(x) d x$.

1. Write the left sum which approximates I with 20 subdivision using sigma notation.
2. The approximation using L_{20} is too \qquad .(small or large) because.
3. Calculate an error bound using the formula $|I-L n| \leq \frac{K_{1}(b-a)^{2}}{2 n}$.
4. How many subintervals do guarantee an error committed by L_{n} of less than 0.0001 .
10) Let $I=\int_{0}^{2 \pi} \cos (2 x) d x$. Find n large enough so that $\left|I-T_{n}\right| \leq 0.1$.
11) Let $I=\int_{a}^{b} f(x) d x$, where f is positive and increasing over the interval $[a, b]$. Indicate whether or not the following statements must be true, cannot be true or maybe true, for all $n \geq 1$.
1. $L_{n}<I$
2. $M_{n}<I$
3. $L_{n}<R_{n}$
4. $L_{n}<M_{n}$
5. $L_{n}<T_{n}$
6. $T_{n}<M_{n}$.
12) Suppose that $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$ if $a \leq x \leq b$. Is R_{n} a more accurate estimate of $I=\int_{a}^{b} f(x) d x$ than T_{n}.
13) Evaluate $\int_{1}^{4} x d x$ by computing the limit of midpoint sums M_{n}.
14) Evaluate $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n}\left(\frac{j}{n}\right)^{3}$ by expressing it as a definite integral and then evaluating this integral using the fundamental theorem of calculus.
15) Is $f(0) \cdot 1+f(2) \cdot 2+f(4) \cdot 3+f(6) \cdot 4$ a Riemann sum approximation to $\int_{0}^{10} f(x) d x$?
