Math 112 – Review for Test 1

Directions: Show your work for full credit. The way you drive your answer is most important.

1) Let $f(x) = x + \sin(x)$. Estimate the value of $\int_0^3 f(x) dx$ by evaluating the left sum with three equal intervals. Find the actual value of the integral using the Fundamental Theorem of Calculus, compare your approximation and find the error committed by L_3 .

- 2) Find a definite integral that is approximated by the left sum: $\frac{2}{5} \sum_{i=0}^{19} e^{\frac{2}{5}i}$.
- **3)** Use sigma notation to express
 - 1. the left sum approximation to $\int_0^{2\pi} \sin(x) dx$
 - (a) with 8 equal subintervals
 - (b) with n equal subintervals
 - 2. the midpoint sum approximation to $\int_1^3 \frac{1}{1+x^2} dx$
 - (a) with 8 equal subintervals
 - (b) with n equal subintervals
- 4) Give an example of a function f and an interval [a, b] so that $L_5 < R_5$.
- 5) Give an example of a function f and an interval [a, b] so that $M_{10} < L_{10}$.
- **6)** Give an example of a function f and an interval [a, b] so that $M_4 < R_4$.

7) Find the exact value of the integral $\int_{1}^{2} (x^{2}+1)dx$ by setting up a right Riemann sum using sigma notation and using the definition of Riemann integral.

8) Do four steps (step size 0.5) in approximating a solution to the initial value problem y' = y - x, y(0) = 2 using Euler's method.

9 Let $I = \int_0^3 f(x) dx$.

- 1. Write the left sum which approximates I with 20 subdivision using sigma notation.
- 2. The approximation using L_{20} is too(small or large) because.....
- 3. Calculate an error bound using the formula $|I Ln| \leq \frac{K_1(b-a)^2}{2n}$.
- 4. How many subintervals do guarantee an error committed by L_n of less than 0.0001.

10) Let $I = \int_0^{2\pi} \cos(2x) dx$. Find *n* large enough so that $|I - T_n| \le 0.1$.

11) Let $I = \int_a^b f(x) dx$, where f is positive and increasing over the interval [a, b]. Indicate whether or not the following statements must be true, cannot be true or maybe true, for all $n \ge 1$.

- 1. $L_n < I$ 2. $M_n < I$ 3. $L_n < R_n$ 4. $L_n < M_n$
- 5. $L_n < T_n$
- 6. $T_n < M_n$.

12) Suppose that f'(x) > 0 and f''(x) > 0 if $a \le x \le b$. Is R_n a more accurate estimate of $I = \int_a^b f(x) dx$ than T_n .

13) Evaluate $\int_{1}^{4} x dx$ by computing the limit of midpoint sums M_{n} .

14) Evaluate $\lim_{n\to\infty} \frac{1}{n} \sum_{j=1}^{n} \left(\frac{j}{n}\right)^3$ by expressing it as a definite integral and then evaluating this integral using the fundamental theorem of calculus.

15) Is $f(0) \cdot 1 + f(2) \cdot 2 + f(4) \cdot 3 + f(6) \cdot 4$ a Riemann sum approximation to $\int_0^{10} f(x) dx$?